Thursday, October 31, 2019

What is the Major Role of Police in Society Assignment

What is the Major Role of Police in Society - Assignment Example A democratic police force fundamentally enforces the rule of law equally among the members of the society, rather than the rule of those persons in power or with power. Police community relations function as an adjunct or as an alternative to the centralized, bureaucratic model of policing, where neutrality and efficiency are valued (Police and Democracy, 2001, n.p.). Police members are encouraged to view themselves as part of the community and help in solving the problems of the community. Community policing emphasizes the social service and order maintenance role of the police. The underlying assumption of police-community relations is that the police would be more effective in doing its duties by immersing itself in the concerns of the community and if it has the support of and inputs from the community. The justice system in the United States operates under two levels - the federal and state levels. The state justice system basically covers prosecutions of most law violations except those offenses that concern federal government employees, crimes committed across state lines and fraud involving the national government which is covered by the federal justice system. In turn, the justice system is differentiated between the liabilities involved, whether it be criminal or civil. Criminal trials happen when the government prosecutes an individual for violating the rights and security of another individual or the society as a whole. Civil trials involve the settlement of disputes between two parties. In addition to the civilian courts, there is the military justice system which has jurisdiction over offenses committed by military members. There are also a number of Native American or American Indian justice systems which settles disputes between members of various American Indian tribes. The police selection processes have a great impact on police-community relations as the system of recruitment and its purposes will affect how effective the police will be in gaining or maintaining support from the community. Recruitment of members of the police force (or the selection of the police chief for example that takes into consideration the situation of the community) would very much aid in the smooth maintenance of the police-community relationship. For example, if a community is composed mostly of black people, it makes sense to have a police force where its membership reflects the racial make-up of the community. Similarly, recruitment if it has to take consideration of police-community relations, must first look into the recruitment of immediate members of the local community, rather from the outside of the community in question. Â  

Tuesday, October 29, 2019

Letter of Advice Essay Example | Topics and Well Written Essays - 1250 words

Letter of Advice - Essay Example Good communication tips are indispensible in constructive relationships (Allen, 2002). Proper communication skills enable one in effectively conveying one’s feelings, thoughts and information that are crucial for building an interpersonal experience. It is important to note of the barriers that hinder effective communication and relationships. Most barriers in communication stem from self-protection. However, there are unavoidable circumstances, especially, if partners come from backgrounds that possess disparity (Wood, 2012). The intensity of the situation regards the level of disparity. The crucial thing for partners is that they realize these differences. In turn, they should be aware of how the same affects their communication. Individuals possess fears and insecurities that hinder one from wholly experiencing the benefits of a relationship. The light thing about these fears is that people learn about the same. This comes from the fact that partners may fear judgment from the same. Besides, they fear ridicule and appearing stupid in front of partners. This fear is coupled comes with the view that someone is sensitive of being overpowered. In this sense, fear impairs communication in notable ways. To begin with, a partner would not communicate true thoughts because one preempts what the other partner would like. This creates a situation where an individual stifles one’s emotions and thoughts. ... It articulates as a case of personal insulation. Insensitivity expresses in notable ways. For instance, it comes as a method of diverting others’ concerns. In typical instances, one would turn a mutual conversation towards oneself. It deviates from the person who engages in talking. This occurs when a partner does not have proper listening skills. In certain instances, it comes as a method of attracting attention to oneself. Besides, a partner may experience discomfort out of a conversation. A prominent scenario in such situation regards the fact that partners might not be aware of the same. Additionally, assumptions can be momentous barriers to effective communication. In such instances, information that is sent articulates in a different way for the receiver. This creates misunderstanding that hampers the whole relationship. A typical example regards utilizing signs in communication with the belief that the other partner would understand. Furthermore, labeling and judging ma kes a significant obstacle to communication. In many communication instances, a partner gains control of situations by name-calling. On the other end, judging may consist of praising. Both of the situations do not create adequate scenarios for objective interpretation and response to messages. In terms of listening, it is essential for partners to realize that the same goes beyond hearing. In this sense, partners should involve ears, hearts and minds. Partners must be ready to exert efforts in listening. The first step is mindfulness in the same. It involves full presence in communication. This involves striving to understand the other person without imposing one’s thoughts, ideas and feelings (Wood, 2012). Mindful listening involves adopting the perspective of another

Sunday, October 27, 2019

Partial Molar Properties And Their Application

Partial Molar Properties And Their Application Thermodynamics deals with energy changes and its relationship with work. It is based on three laws of thermodynamics which are used as axioms just as Newtons laws motion from the basis of classical mechanics. The first two laws are based on facts observed in every day life. The predictions based on these laws have been verified in most cases and so far no case has been reported where the laws break down. The laws can be stated in mathematical form. Hence, thermodynamics is an exact science. The thermodynamic theory can be developed without gaps in the argument using only moderate knowledge of mathematics. [B.]ABOUT PARTIAL MOLAR PROPERTY: Thermodynamic relations derived earlier are applicable to closed systems. In a system where not only the work and heat but also several kinds of matter are being exchanged, a multicomponent open system has to be considered. Here, the amounts of the various substances are treated as variables like any other thermodynamic variables. For example, the gibbs free energy of a system is a function not only of temperature and pressure , but also of the amount of each substance in the system,such that G=f(T,p,n1,n2à ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦.nk) Where n1,n2,à ¢Ã¢â€š ¬Ã‚ ¦.,nk represent the amounts of each of the K components in the system . for simplicity, let a system contain only two components. The total differential of G is dG=(?G/?T)P,n1,n2 dT+(?G/?p)T,n1,n2 dp+(?G/?n1)T,p,n2 dn+(?G/?n2)T,p,n1 dn2 In this eq., the partial derivatives (?G/?n1)T,P,n2 and (?G/?n2)T,P,n1 are known as partial molar free energies of components one and two , respectively. In genral, the partial derivative of a thermodynamic function Y with respect to the amount of component i of a mixture when T,p and amounts of other constituents are kept constant , is known as the partial molar property of the ith component and is represented as Yi,pm. Thus Yi,pm=(?Y/?ni)T,p,njs i=!j [C.]DEFINITION OF PARTIAL MOLAR PROPERTY: The partial molar property may be defined in either of the following two ways: 1. it is the change in Y when 1 mole of component i is added to a system which is so large that this addition has a negligible effect on the composition of the system. 2. Let dY be the change in value of Y when an infinitesimal amount dni of component i is added to a sysem of definite composition. By an infinitesimal amount dni we mean that its addition does not cause any appreciable change in the composition of the system. If we divide dY by dni , we get the partial molar property (?Y/?ni). thus, the partial molar property of the component i may be defined as the change in Y per mole of component i when an infinitesimal amount of this component is added to a system of definite composition. [D.]TYPES OF MOLAR PROPERTIES: (a.) Partial molar volume: The partial molar volume is broadly understood as the contribution that a component of a mixture makes to the overall volume of the solution. However, there is rather more to it than this: When one mole of water is added to a large volume of water at 25 °C, the volume increases by 18cm3. The molar volume of pure water would thus be reported as 18cm3 mol-1. However, addition of one mole of water to a large volume of pure ethanol results in an increase in volume of only 14cm3. The reason that the increase is different is that the volume occupied by a given number of water molecules depends upon the identity of the surrounding molecules. The value 14cm3 is said to be the partial molar volume of water in ethanol. In general, the partial molar volume of a substance X in a mixture is the change in volume per mole of X added to the mixture. The partial molar volumes of the components of a mixture vary with the composition of the mixture, because the environment of the molecules in the mixture changes with the composition. It is the changing molecular environment (and the consequent alteration of the interactions between molecules) that results in the thermodynamic properties of a mixture changing as its composition is altered. The partial molar volume, VJ, of any substance J at a general composition, is defined as: Fig: the partial molar volumes of water and ethanol at 25degree C where the subscript n indicates that the amount of all the other substances is held constant. The partial molar is the slope of the plot of the total volume as the amount of J is changed with all other variables held constant: Note that it is quite possible for the partial molar volume to be negative, as it would be at II in the above diagram. For example, the partial molar volume of magnesium sulphate in water is -1.4cm3 mol-1. i.e. addition of 1 mol MgSO4 to a large volume of water results in a decrease in volume of 1.4 cm3. (The contraction occurs because the salt breaks up the open structure of water as the ions become hydrated.) Once the partial molar volumes of the two components of a mixture at the composition and temperature of interest are known, the total volume of the mixture can be calculated from: The expression may be extended in an analogous fashion to mixtures with any number of components. The most common method of measuring partial molar volumes is to measure the dependence of the volume of a solution upon its composition. The observed volume can then be fitted to a function of the composition (usually using a computer), and the slope of this function can be determined at any composition of interest by differentiation. (b.) Partial molar gibbs energies: The concept of a partial molar quantity can be extended to any extensive state function. For a substance in a mixture, the chemical potential is a defined as the partial molar gibbs energy: i.e. the chemical potential is the slope of a plot of the Gibbs energy of the mixture against the amount of component J, with all other variables held constant: In the above plot, the partial molar Gibbs energy is greater at I than at II. The total Gibbs energy of a binary mixture is given by: The above expression may be generalised quite trivially to a mixture with an arbitrary number of components: where the sum is across all the different substances present in the mixture, and the chemical potentials are those at the composition of the mixture. This indicates that the chemical potential of a substance in a mixture is the contribution that substance makes to the total Gibbs energy of the mixture. In general, the Gibbs energy depends upon the composition, pressure and temperature. Thus G may change when any of these variables alter, so for a system that has components A, B, etc, it is possible to rewrite the equation dG = Vdp SdT (which is a general result that was derived here) as follows: which is called the fundamental equation of chemical thermodynamics. At constant temperature and pressure, the equation simplifies to: Under these conditions, dG = dwn,max (as was demonstrated here), where the n indicates that the work is non-expansion work. Therefore, at constant temperature and pressure: The idea that the changing composition of a system can do work should be familiar this is what happens in an electrochemical cell, where the two halves of the chemical reaction are separated in space (at the two electrodes) and the changing composition results in the motion of electrons through a circuit, which can be used to do electrical work. On a final note, it is possible to use the relationships between G and H, and G and U, to generate the following relations: Note particularly the conditions (the variables that must be held constant) under which each relation applies. Fig: the partial molar volumes of water and ethanol at 25degree C where the subscript n indicates that the amount of all the other substances is held constant. The partial molar is the slope of the plot of the total volume as the amount of J is changed with all other variables held constant: Note that it is quite possible for the partial molar volume to be negative, as it would be at II in the above diagram. For example, the partial molar volume of magnesium sulphate in water is -1.4cm3 mol-1. i.e. addition of 1 mol MgSO4 to a large volume of water results in a decrease in volume of 1.4 cm3. (The contraction occurs because the salt breaks up the open structure of water as the ions become hydrated.) Once the partial molar volumes of the two components of a mixture at the composition and temperature of interest are known, the total volume of the mixture can be calculated from: The expression may be extended in an analogous fashion to mixtures with any number of components. The most common method of measuring partial molar volumes is to measure the dependence of the volume of a solution upon its composition. The observed volume can then be fitted to a function of the composition (usually using a computer), and the slope of this function can be determined at any composition of interest by differentiation. (C.)PARTIAL MOLAR THERMAL PROPERTIES: 1. Partial molar heat capacities: the heat capacity at constant pressure Cp of a solution containing n1 moles of solvent and n2 moles of solute is given by Cp=(?H/?T)P,N à ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦eq(1) The pressure and compostion being constant. Upon differentiation with respect to n1,maintaining n2 constant,it follows that CP1=(?CP/?n1)T,P,n2 =?H/?T?n1 .eq(2) Where Cp1 is the partial molar heat capacity,at constant pressure,of the constituent 1 of the given solution. The partial molar heat constant H1 of this constituent is defined by H1=(?H/?n1)T,P,n2 And hence differentiation with respect to temp. gives (?H1/?T)P,N=?H/?T?n1 =CP1 à ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦.eq(3) The result being identical with CP1 by eq.(3). The partial molar heat capacity of the solvent is any particular solution thus be defined by either eq(1) and eq(2). Similarly,i.e.,constituent 2, Cp2=(?CP/?n2)T,P,n1 =(?H2/?T)P,N à ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦..eq(4) We know, Li=H1-H10 Is differentiated with respect to temp.,at constant pressure and composition,it follows that (?L1/?T)P,N=(?H1/?T)P,N-(?H10/?T)P,N = Cp1-Cp10 à ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦eq(5) Where Cp1,identical with Cp1 or Cp1o, is the molar heat capacity of the pure solvent or the partial molar heat capacity of the solvent in a solution at infinite dilution. Thus, Cp10 may be regarded as an experimental quantity, and if the variation of the relative partial molar heat content of the solvent with temperature,i.e. (?L1/?T)P,N, is known , it is possible to determine Cp1 at the corresponding composition of the solution. The necessary data are rarely available from direct thermal measurements of L1, such as thus described in 44f,at several temperatures, but the information can often be obtained, although not very accurately from E.M.F measurements. By differentiating the expression for the relative partial molar heat content of the solute it is found, in an exactly similar manner to that used above , that (?L2/?T)P,N=(?H2/?T)P,N-(?H02/?T)P,N =CP2-CP20 à ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦eq(6) In this expression,Cp20 is the partial molar heat capacity of the solute in the infinitely dilute solution. Although the experimentel significance of the quantity is not immediately obvious.thus from a knowledge of the variation of L2, the partial molar heat content of the solute with temprature it should be possible to derive, with the aid of equation(6) , the partial molar heat capacity of the solute Cp2 at the given composition. [E.]Determination of partial molar properties: 1.Direct method: in view of the definition of the partial molar properties Gi as Gi=(?G/?ni)T,P,n1,à ¢Ã¢â€š ¬Ã‚ ¦.. à ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦.eq(1) An obvious method ffor its determination is to plot the value of the extensive properties G,at constant temperature and pressure, for various mixtures of the two components against the number of moles,e.g.,n2,of the one of them,the value of n1 being kept constant. The slope of the curve at any particular composition,which maybe determined by drawing a tengent to the curve, gives the value of G2 at that comoposition. Since the molality of a solution represents the number of moles of solute associated with a constant mass,and hence a constant number of moles,the plot of the property G against the molality can be used for the evaluation of the partial molar property of the solute. Once G2 at any composition has been determined, the corresponding value of G1 is readily derived by means of the relationship, G=n1G1+n2G2 In view of the difficulty of determining the exact slope of the curve at all points, it is preferable to use an analytical procedure instead of the graphical one just described. The property G is then expressed as a function of the number of moles of one component,e.g.,the molality, associated with a constant amount of the other component. Upon differentiation with respect to n,i.g.,the molality, an expression for the partial molar property is obtained. 2.from apparent molar properties: a method that is often more convenient and accuarate than that described above,makes use of the apparent molar property. We know G-n1G1=n2à ¶2 If n1 is maintained constant,so that n1G1 is constant, differentiation with respect to n2 , constant temp. and pressure being understood,gives G2 =(?G/?n2)n1 = (?à ¶G/?n2)n1 + à ¶G à ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦eq(2) G2 = ((?à ¶G/? ln n2)n1+ à ¶G à ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦..eq(3) Since the molality m is equivalent to n2, with n1 constant, eq(2) and eq(3) may be written as G2= m (d à ¶G/dm)+ à ¶G à ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦eq(4) G2=( d à ¶G/d ln m)+ à ¶G à ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦Ãƒ ¢Ã¢â€š ¬Ã‚ ¦..eq(5) Respectively. If the apparent molar property à ¶G is determined for various values of n2 , with n1 constant , or at various molalities, the partial molar property G2 can be calculated from the slope, at any given composition, of the plot of à ¶G against n2 or against ln n2. The method based on the use of eqs(3)(5) is usally more accurate than that involving the logarithmic plot,since it does not give undue importance to result obtained in dilute solutions. An analytical method can, of course, be used in place of the graphical procedure if à ¶G can be expressed as a function of n2 or of the molality. For use in a later connection, an alternative form of eq(4) is required and it will be derived here. The right hand side of this equation is equivalent to d(m à ¶G)/dm, that is, m (d à ¶G/dm)= G2 and upon integration, m varying between the limits of zero and m, and mdà ¶G between zero and mà ¶G, it is found that mà ¶G=?0m G2 dm à ¶G=1/m?0m G2 dm for dilute solutions,the molality is proportional to the molar concentration c, and hence it is permissible to put this result in the form à ¶G=1/c?0m G2 dm [F.] APPLICATION OF PARTIAL MOLAR PROPERTIES: These properties are very useful since each and every reaction in chemistry occurs at a constant temperature and pressure and under these conditions we can determine these with the help of partial molar properties. They are highly useful when specific properties of pure substances and properties of mixing are considered. By definition, properties of mixing are related to those of the pure substance by: Here * denotes the pure substance M the mixing property z corresponds to the specific property From the definition of partial molar properties, substitution yields: Hence if we know the partial molar properties we can derive the properties of mixing.For the internal energy U, enthalpy H, Helmholtz free energy A, and Gibbs free energy G, the following hold: whereP is the pressure V is the volume T is temperature S is the entropy [G.] BIBLIOGRAPHY: 1. THERMODYNAMICS AND CHEMICAL EQUILIBRIUM AUTHOR: K L KAPOOR 2. THERMODYNAMICS FOR CHEMISTS AUTHOR: SAMUEL GLASSTONE 3. http://www.everyscience.com/Chemistry/Physical/Mixtures/a.1265.php 4. http://www.everyscience.com/Chemistry/Physical/Mixtures/b.1266.php 5. http://www.chem.ntnu.no/nonequilibrium-thermodynamics/pub/192-Inzoli-etal.pdf 6. http://physics.about.com/od/thermodynamics/p/thermodynamics.htm 7. http://www.chem.boun.edu.tr/webpages/courses/chem356/EXP5-Determination%20of%20Partial%20Molar%20Quantities.pdf

Friday, October 25, 2019

National Debt Growth :: Argumentative Economy Economics Papers

National Debt Growth I believe that the growth of the national debt creates a problem that is great to be of little concern. I believe that todays social programs are in big trouble, and just are not going to work in the future. For example, it seems to me the social security is a dream program especially for the baby boomers who can not expect a small population of younger people to pay the bills. I also believe that that a lot of government services waste money in obvious and obsurd ways. For example, the F-117 stealth fighters that cost five hundred million dollars and don't live up to the performance capabilities that were oringinally proposed. The government should reduce spending and do what everyone else does on a slim budget and spend only what is neccesary to survive and grow. I also think that we can no longer roll over debt since the national debt is growing faster than the economy. As a country I think that we need to look at the possible and impossible commitments that we can make, and take a look at where we are going to get the money. The Treasury is all ready considering borrowing money from social programs like the G-Fund and the Civil Service Retirement and Disablility Fund so the federal government won't default on its loan obligations. Although I don't think that it is good to cut from social programs, I do think that we need to decide if we want a national debt that can't be sustained and is bad for investment or a social security system that might not be around anyway. I also think that social programs in the government needs to be simplified, and operate in a more efficient manner. It seems to me that collecting taxes, and handing out expenditures to many different programs, a lot of which I probably don't know what they are. It takes a lot of clerical work to run these programs though, and the money seems to get filtered

Thursday, October 24, 2019

Visual Stream Mapping

VISUAL STREAM MAPPING 1. 1 Introduction Lean manufacturing is a production practice that considers the expenditure of resources for any goal other than the creation of value for the end customer to be wasteful, and thus a target for elimination. Working from the perspective of the customer who consumes a product or service, â€Å"value† is defined as any action or process that a customer would be willing to pay for. The goal of Lean is to becomes the creation and maintenance of a production system which runs repetitively, day after day, week after week in a manner identical to the previous time period. Lean is actually the set of â€Å"tools† that assist in the identification and steady elimination of waste. As waste is eliminated quality improves while production time and cost are reduced. Examples of such â€Å"tools† are  Value Stream Mapping,  5S,  Kanban  (pull systems), and  poka-yoke  (error-proofing). 1. 2Visual Stream Mapping (VSM) Value stream mapping is a process designed to reduce lead time, to make product flow, and to eliminate waste (non value added operations or activities), all for the purpose of meeting customer demand at the lowest cost, and with the highest quality. Lean thinking relies on recognizing the â€Å"seven wastes† – over-production, over-processing, inventory, motion, scrap, waiting, and transportation. Target maps reveal which of these wastes can be eliminated now, and where. The key to producing useful target maps is to look for low-cost improvements that encourage flow, reduce inventory, and test the organization’s ability to manage in a lean environment. The challenge of developing the attitudes, systems and communication necessary for a true pull system operating at customer takt should not be underestimated. A high inventory system hides a multitude of problems, which will slowly be exposed as batch sizes and WIP are reduced. The level of organization and standardization required for one-piece flow are rarely found in companies with traditional production planning and traditional management. Visual Stream Mapping can identify wastes such as: 1. Over-production Over-production is the production of material which is not needed now. It usually occurs in the form of large batches, produced faster than the rate at which they can be consumed Over production is caused by a number of factors, such as long setups, poor quality, machine unreliability, avoidance of setups in order to make performance measures look better, or the desire to keep an expensive resource working. 2. Over-processing There are two aspects to this kind of waste which is overdoing it in the sense of doing too much, too soon, and beyond what is necessary and using inappropriate equipment, especially equipment that is much larger, faster, or more complicated than necessary. It can be difficult to distinguish between over-processing and over-production, because the first often leads to the second. Over-processing is usually associated with going beyond what the customer requires. Examples are reports and presentations that have more information than the audience is looking for, and therefore are difficult to understand and act on. 3. Inventory Whether in the form of work in process (WIP) or finished goods, inventory is considered the great problem in production. With material always available, the focus is taken away from the process, quality, and the rate of work. Inventory thus actually hides problems that exist in the production system. In addition, inventory has an impact on waste that is indirectly caused by having more than needed. Inventory leads to a lack of attention to the process. This means that processes are designed with cycle times well outside of the average. By buffering the process with inventory, the wide variance in cycle times is not noticed until an attempt is made to set up a continuous flow cell or line. 4. Transportation When a facility layout extends over a large area, the movement of inventory from operation to operation becomes necessary. It is thus another result of over-production. It also results from laying out production equipment by function. Functional layout places each type of machine in its own cell for a variety of reasons, mainly to do with the perceived benefits of specialization. 5. Motion Motion is a waste associated with both operators and equipment. In the case of operators, wasted motion includes bending, walking to get or place parts, lifting, and taking more than one step to reach or view machine interfaces. Motion can add significantly to cycle time, and must therefore be considered separately when creating and balancing cells and focused factories. . Scrap Scrap and rework are obviously wasteful. In batch production, scrap is rarely visible, since there is always more material available, and the run can be extended for a short while to produce the required quantity. In a continuous flow system, scrap is a serious problem, since every machine loses a cycle when a piece is rejected. This destroys b alance, and when producing to customer takt, results in a missed shipment. 7. Waiting Waiting takes a number of forms. Operators wait for machines to complete their cycle, or for material to arrive so they can work on it. Machines wait for work, and also for operators to load and unload work pieces or other production material. The kinds of waiting that are common in batch production facilities are different from the waiting that is wasteful in a continuous flow system. 1. 3Characteristics of VSM This is an elements that need an observation and a consideration during applying this VSM: 1. Recognize where environmental impacts occur in a product line. 2. Quantify raw materials used by processes and compare it to materials actually needed to produce the product. . Identify pollution and wastes generated by the production activities. 4. Identify root causes of wastes and inefficiencies. There are a number of common icons used in value stream maps, but icons can also be customized to best serve a value stream map. Icons help distinguish different elements of a product line from another. For example, different arrows should be used to distinguish between product and information movement. The figure 1. 0 be low contains commonly used icons in value stream mapping. Figure 1. 0 1. 4Implementation Once future state map completed a plan to achieve this aim need to be developed, the implementation cannot be done unless there is an actual plan that can vividly visualize the aim of VSM. Without a full blown project implementation with full commitment from everyone in the company you will not reach your future state and gain the identified benefits. The future state map will detail the amount by which your lead times will be reduced, lower stock holdings, potential efficiency improvements and so forth so it should be possible to justify any project financially. Also known as the  Deming Cycle  in many circles, Plan, Do, Check, Act is a simple model for improvement, you make your plan, you implement your plan, you check if you have achieved your stated aims and you then act to make any necessary changes. This cycle is repeated over and over again continually driving improvement. This is how you implement your Value Stream Mapping, it is an iterative process, one that you repeat over and over. You make your initial current state map, plan your improvements, then make your improvements. Then you check your progress by creating a new current state map and plan additional improvements, your value stream mapping should be repeated to ensure continual improvement of your processes. 2. 1 Process of VSM The first action of value stream mapping is to map the existing process which is the result is a Current State Map. Once a valid current state map has been constructed, it is then possible to suggest improvements, with confidence that the results from the proposed system will be quite similar to those of the Future State Map. In this way, the lean initiative moves from solid footing to solid footing. There is no â€Å"leap of faith† or â€Å"trust me† required to convince everyone that there really is a better way to carry out the process. 2. 1. 1Current State When reviewing a product or process line, the first value stream map you develop should record the current state of the line. Remember, conventional value stream mapping tends to focus at a facility-wide level. The current state map should take a snapshot of the current practices and materials usage rates for all processes. A current state map should also record where environmental impacts occur in the product line. The following processes typically have environmental impacts: 1. Metal Fabrication (Milling, Welding, Stamping, and Machining) 2. Parts Washing 3. Surface Cleaning 4. Plastic Forming (Extrusion and Moulding) 5. Surface Coating 6. Chemical Formulation 7. Hazardous Materials Handling 8. Waste Management A current state value stream map should also establish baselines for all inputs and outputs which are presented in Table 2. 1. 1 below. INPUT| OUTPUT| Pounds of materials used| Pounds of solid waste generated| Pounds of hazardous materials used| Pounds of hazardous waste generated| Gallons of water used| Pounds of air pollution emitted| Gallons of water consumed| Gallons of wastewater treated| Watts of energy used| | BTUs of energy used| | Table 2. 1. 1 Other inputs and outputs that conventional value stream maps identify include changeover and cycle time, labour, and rework. Exhibit 2. 0 illustrates a conventional value stream map, shows how to denote process inputs and outputs may exist in the product line. . 1. 2Compare ‘Use’ Vs ‘Need’ In the past, value stream maps would examine the time it takes to produce a product and the proportion of that time that is value added or the time spent actually working on the product. The timeline was a graphic representation that compared the two, but didn’t focus on the resources consumed and waste generated in making the product. A materials line is a variati on of a timeline and can be developed for any type of resource (e. g. , water, energy, total materials, and/or a critical substance used in the product). A materials line, located on the bottom of a value stream map, shows the amount of raw materials used by each process in the value stream and the amount of materials that end up in the product and add value from a customer’s perspective. For example, the materials line illustrated below in figure 2. 0 compares the amount of water used and needed in the milling and parts washing processes in a product line. Figure 2. 1. 2 Once you collect data for the materials line, you may notice large differences between the amount of material used and the amount needed for the product. This exercise can help you target the largest sources of waste for prioritizing improvement efforts. Exhibit 2 presents a value stream map with a materials line that focuses on water usage. You can also create separate maps that address other inputs such as hazardous materials or energy use. 2. 1. 3Visualize an Improved â€Å"Future State† Future state maps are created to show what a product or process line would look like after improvements are made. Future state maps should be drafted following the completion of a current state map. Practitioners play a vital role in developing future state maps, as they can help suppliers identify areas where environmental improvements can be made. More often than not, future state maps look closer at process level improvements. Facilities cannot typically make changes to the order in which processes take place in a product line, but they can implement changes to specific steps of a process. Opportunities for process improvement can be shown on a value stream map with a starburst as illustrated in Exhibit 3. Starbursts can identify processes that need to be examined closer, such as in Exhibit 4. Future state maps should represent the product or process line in a perfect state or fully optimized and highly efficient. It should not be restrained by cost. The future state should include the best available technologies and equipment, and estimated waste reductions should be included where appropriate. For example, if a surface coating line could reduce solvent use by installing a solvent recycler, the future state map should represent that improvement. The materials line that should be included on a current state map can be a good indicator of where improvement opportunities exist. If a process showed a large difference between the amount of a material used and the amount of material needed, practitioners should question why the difference exists. Inefficiencies are the root cause of most wastes. Efficient production lines will have little to no difference between the amount used compared to the amount actually needed to produce the product. Exhibits 5 and 6 show the difference between a current state and a future state parts washing line. Current and future state process maps can be generated for one or many processes that occur in a facilities product line. . 1Benefits and Importance of VSM Value stream mapping is often used at the outset of a lean program to identify the current process within an organization. Strictly speaking Value stream mapping is used to map information and materials through a production process but it can be used for so much more than simply transcribing the process. This is the list of benefits and importance of applying VSM technique : 1. It helps portray the process from the start of the production process to the end. 2. It help finds bottlenecks and find waste within the process. . It’s a group exercise and therefore can involve your workforce as part of your lean improvement program. 4. You can use a completed value stream map as an improvement aide to document transitions to a future state value stream map. 5. It’s an inexpensive tool, basically all you need is a paper and pen. 6. It can be easily critiqued by your workforce to highlight problems that exist within the process. 7. It’s not just for manufacturing, value stream mapping has been used in offices, service industries healthcare etc. 8. It’s easy to understand with a little bit of training on VSM, icons maps are easy to understand conveying powerful process in a simple pictorial fashion. 4. 1Conclusion This study has outlined a decision-making process for the mapping of the value stream or supply chain. This general process is grounded in a contingency approach as it allows the company to choose the most appropriate methods for the particular industry, people and types of problem that exist. The typology is based around the identification of the particular wastes the company or value stream members wish to reduce or eliminate. As such, it allows for an extension of the effective internal waste reduction philosophy pioneered by leading companies such as Toyota. In this case, however, such an approach can be widened and so extended to a value stream setting. This extension capability lies at the heart of creating lean manufacturing, with each of the value stream members working to reduce wasteful activity both inside and between their organizations. 5. 1 Reference 1. http//: EzineArticles. com/225609 2. www. gardinernielsen. com 3. www. en. wikipedia. org/wiki/Value_stream_mapping 4. www. greensuppliers. gov/pubs/VSM. pdf

Wednesday, October 23, 2019

Chapter #9 Summary: New Directions in Planning Theory Essay

Chapter #9 Summary: New Directions in Planning Theory Susan S. Fainstein Susan S. is professor of urban planning and acting program director in Columbia University. In this article she discusses and critiques contemporary planning theory in terms of its usefulness in addressing what I believe to be its defining question: what is the possibility of consciously achieving widespread improvement in the quality of human life within the context of a global capitalist political economy. She examines the three approaches referred to above under the rubrics of: -(1) the communicative model; sometimes called the collaborative model, emphasizes the planner’s role in mediating among â€Å"stakeholders† within the planning situation -(2) the new urbanism; frequently labeled neo-traditionalism, paints a physical picture of a desirable city to be obtained through planning; -(3) and the just city, which derives from the political economy tradition, while also outcome oriented, is more abstract than the new urbanism, presenting a model of spatial relations based on equity. The Communicative Model The communicative model draws on two philosophical approaches— American pragmatism as developed in the thought of John Dewey and Richard Rorty and the theory of communicative rationality as worked out by Jurgen Habermas.5 The two strands differ somewhat in their methodologies. Neo-pragmatism tends toward empiricism. Theoretical and Practical Deficiencies In its effort to save planning from elitist tendencies, communicative planning theory runs into difficulties. The communicative model should not be faulted for its ideals of openness and diversity. Its vulnerability rather lies in a tendency to substitute moral exhortation for analysis. Although their roots, via Habermas, are in critical theory, once the communicative theorists move away from critique and present a manual for action, their thought loses its edge. THE NEW URBANISM â€Å"The new urbanism† refers to a design-oriented approach to planned urban development. Developed primarily by architects and journalists, it is  perhaps more ideology than theory, and its message is carried not just by academics but by planning practitioners and a popular movement. New urbanists have received considerable attention in the United States and, to a lesser extent, in Great Britain.Their orientation resembles that of the early planning theorists–Ebenezer Howard, Frederic Law Olmsted, Patrick Geddes–in their aim of using spatial relations to create a close-knit social community that allows diverse elements to interact. The new urbanists call for an urban design that includes a variety of building types, mixed uses, intermingling of housing for different income groups, and a strong privileging of the â€Å"public realm† Critique The new urbanism is vulnerable to the accusation that its proponents oversell their product, promoting an unrealistic environmental determinism that has threaded its way throughout the history of physical planning THE JUST CITY In Socialism: Utopian and Scientific Friedrich Engels (1935, p. 54) presents the Marxian critique of utopianism: The final causes of all social changes and political revolutions are to be sought, not in men’s brains, not in man’s better insight into eternal truth and justice, but in changes in the modes of production and exchange. . . . For Marx and Engels, social transformation could occur only when the times were ripe, when circumstances enabled the forces for social amelioration to attain their objectives. In their view utopian thinkers like Robert Owen and Fourier could not succeed because they developed a social ideal that did not coincide with a material reality still dominated by capitalist interests. Only smashing the structure of class domination could create the conditions for achieving a just society. CONCLUSION In Her conclusion she defends the continued use of the just city mode and a modified form of the political-economy mode of analysis that underlies it, described below The three types of planning theory described in this essay all embrace a social reformist outlook. They represent a move from the purely critical perspective that characterized much theory in the seventies and eighties to one that once again offers a promise of a better life. Whereas reaction to technocracy and positivism shaped planning theory of that period, more recent planning thought has responded to the challenge of post-modernism.